
 
 

 

 

  

 

 

 

Yubikey Configuration 
COM API 

YubiKey device Windows configuration 
component 

Version: 2.2 

 

May 22, 2012 

 

 

 

 

 

 

 

 

 

  

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 2 of 20 
 

yubico

cococo 
Introduction 

Yubico is the leading provider of simple, open online identity protection. The company’s 

flagship product, the YubiKey®, uniquely combines driverless USB hardware with open 

source software. More than a million users in 100 countries rely on YubiKey strong two-factor 

authentication for securing access to computers, mobile devices, networks and online 

services. Customers range from individual Internet users to e-governments and Fortune 500 

companies. Founded in 2007, Yubico is privately held with offices in California, Sweden and 

UK. 

Disclaimer 

The contents of this document are subject to revision without notice due to continued 
progress in methodology, design, and manufacturing. Yubico shall have no liability for any 
error or damages of any kind resulting from the use of this document. 
 
The Yubico Software referenced in this document is licensed to you under the terms and 
conditions accompanying the software or as otherwise agreed between you or the company 
that you are representing.  

Trademarks 

Yubico and YubiKey are trademarks of Yubico Inc. 

Contact Information  

Yubico Inc 

228 Hamilton Avenue, 3rd Floor 

Palo Alto, CA 94301 

USA 

info@yubico.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:info@yubico.com


 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 3 of 20 
 

yubico

cococo 
Contents 

Introduction.......................................................................................................................................... 2 

Disclaimer............................................................................................................................................ 2 

Trademarks ......................................................................................................................................... 2 

Contact Information ............................................................................................................................. 2 

1 Document Information ..................................................................................................................... 5 

1.1 Purpose ................................................................................................................................... 5 

1.2 Audience ................................................................................................................................. 5 

1.3 Related documentation ........................................................................................................... 5 

1.4 Document History .................................................................................................................... 5 

1.5 Definitions ................................................................................................................................ 5 

2 Introduction ...................................................................................................................................... 6 

2.1 Programming model ................................................................................................................ 6 

2.2 Yubikey 2.x support ................................................................................................................. 6 

2.3 Limitations ............................................................................................................................... 6 

3 YubiKey concepts ........................................................................................................................... 7 

3.1 Configuration ........................................................................................................................... 8 

3.2 Device password ..................................................................................................................... 8 

3.3 Device public identity .............................................................................................................. 8 

3.4 Device encryption key ............................................................................................................. 9 

3.5 Device secret identity - UID ..................................................................................................... 9 

4 Using the API ................................................................................................................................ 10 

4.1 Methods ................................................................................................................................. 10 

4.2 Properties .............................................................................................................................. 10 

4.3 Callbacks ............................................................................................................................... 10 

4.4 String representation ............................................................................................................. 11 

4.5 Yubikey 2.0 support .............................................................................................................. 11 

4.6 Debug function ...................................................................................................................... 11 

4.7 A quick example .................................................................................................................... 11 

5 API Description.............................................................................................................................. 12 

5.1 General .................................................................................................................................. 12 

5.2 Synopsis ................................................................................................................................ 12 

5.3 IYubiKeyConfig methods and properties .............................................................................. 13 

5.3.1 ykIsInserted - Returns TRUE if a Yubikey device is inserted ........................................... 13 

5.3.2 ykIsConfigured - Returns TRUE if a configured device is inserted ................................... 13 

5.3.3 ykEnableNotifications – Enable asynchronous notifications ............................................. 13 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 4 of 20 
 

yubico

cococo 
5.3.4 ykCurPWD – Set current device password ....................................................................... 13 

5.3.5 ykNewPWD – Set new device password .......................................................................... 13 

5.3.6 ykStaticID – Set device static identity ............................................................................... 14 

5.3.7 ykUID – Set device UID .................................................................................................... 14 

5.3.8 ykKey – Set device encryption key ................................................................................... 14 

5.3.9 ykFlagProperty – Set state of configuration property flags ............................................... 14 

5.3.10 ykClear – Flush all settings ........................................................................................... 15 

5.3.11 ykProgram – Execute device programming .................................................................. 15 

5.3.12 ykEnableDebug – Enable debug mode ........................................................................ 16 

5.4 _IYubiKeyEvents callbacks ................................................................................................... 16 

5.4.1 ykInserted – A device has been inserted .......................................................................... 16 

5.4.2 ykRemoved – device has been removed .......................................................................... 16 

6 Implementation cookbook ............................................................................................................. 17 

6.1 Microsoft VB and VBA (Visual Basic for Applications) .......................................................... 17 

6.2 Microsoft Visual C++ ............................................................................................................. 18 

6.3 Microsoft Internet Explorer / HTML scripting ......................................................................... 19 

 

  



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 5 of 20 
 

yubico

cococo 
1 Document Information 

1.1 Purpose 

The purpose of the device configuration component is to allow easy integration of Yubikey 

configuration functionality into third-party applications in Microsoft Windows environments. 

The component is not intended as a “stand-alone” configuration utility and provided sample 

code is provided as templates only. In the case a configuration tool is needed, please refer to 

the Yubikey Configuration Utility. 

1.2 Audience 

Programmers and systems integrators. 

1.3 Related documentation  

 YubiKey Configuration Utility – The Configuration Tool for the YubiKey  

 The YubiKey Manual – Usage, configuration and introduction of basic concepts  

 Yubico online forum – http://forum.yubico.com 

1.4 Document History  

Date Version Author Activity 

2007-08-23 0.1 JE First draft 

2009-09-11 2.0 JE Updated for YubiKey 2.0 support 

2010-03-05 2.1 JE Updated for Yubikey 2.1 support 

2010-06-09 2.2 JE Updated for Yubikey 2.2 support 

2012-05-22 2.3 ZD Changed document template 

 

1.5 Definitions 

Term Definition 

YubiKey device Yubico’s authentication device for connection to the USB port 

USB Universal Serial Bus 

HID Human Interface Description. A specification of typical USB devices 
used for human interaction, such as keyboards, mice, joysticks etc. 

API Application Programming Interface 

COM Component Object Model – a component based programming model 
developed by Microsoft. 

ActiveX A definition on top of COM, primarily targeted for user interface 
extensions in a Web-browser. 

Callback Function in the User Program called by the API 

AES Advanced Encryption Standard. A NIST approved symmetric 
encryption algorithm. 

OATH-HOTP Initiative for Open Authentication (RFC 4226) 

HMAC Hash-based Message Authentication Code 

SHA-1 Secure Hash Algorithm 1 

 

 

http://forum.yubico.com/


 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 6 of 20 
 

yubico

cococo 
2 Introduction 

This document is intended as a reference for software developers who are integrating device 

personalization features with Yubico’s YubiKey. 

Yubico provides a high-level device configuration component based on Microsoft’s 

COM/ActiveX technology. With this approach, a wide range of programming languages, 

scripting environments and software packages can perform device configuration operations 

using a single unified interface. 

This document assumes a conceptual knowledge about the Yubico YubiKey, its functions and 

intended usage. 

The document further assumes working knowledge of COM, and at least one programming 

language that supports COM components. Provided examples are developed with Microsoft 

Visual Studio .NET 2003. 

The component is designed for the Microsoft Windows Win32 environment and works with 

Windows versions from Windows 2000 and onwards. Integration with Microsoft’s .NET 

programming model is straightforward. Refer to appropriate .NET documentation of 

integration of COM components. 

2.1 Programming model 

By using COM/ActiveX, most programming languages and third-party tools can interface to 

the YubiKey via the YubiKcom Component through a uniform interface with standard data 

representation. In other words, the component can be used by any programming language 

and development tool supporting COM/ActiveX. Examples include Visual C++, Visual Basic, 

Delphi, Microsoft Office (VBA) and Internet Explorer VB Script. 

2.2 Yubikey 2.x support 

The component has been upgraded to support Yubikey 2.x. In order to keep the binary 

interface, selection of configuration 1 or 2 is done by the means of a flag property rather than 

providing a new method or property for it. 

2.3 Limitations 

The component is intended for trials and small-scale deployments, where devices are 

programmed one by one. The component is intended to work without requiring external 

hardware, which as such implies that attachment and removal of USB devices will be handled 

by the operating system. Enumeration of an inserted USB device takes some 2-3 seconds on 

a typical Windows XP installation. This time practically limits the overall throughput of a 

personalization process. 

Consult Yubico for volume configuration, which can be performed at significantly higher speed 

with support of external Yubico proprietary hardware. 

  

 

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 7 of 20 
 

yubico

cococo 
3 YubiKey concepts 

The YubiKey is an authentication token capable of generating time-variant One Time 

Passwords (OTPs). The OTPs are made up of a number of fields where some are time-variant 

and sequenced in such a way that an OTP is guaranteed to be unique. Before the OTP is sent, 

it is encrypted with a 128-bit symmetric AES key. 

 

The shadowed entities in the schematic denote fields that can be configured by the 

configuration component. 

The unique approach with the YubiKey is that it identifies itself as a keyboard peripheral and 

that the encrypted OTP is transmitted as a series of emulated keystrokes. Thereby, the key can 

be used in any environment supporting USB/HID keyboards without the need of any client-side 

drivers. 

The service validating an OTP has the same AES key and uses this to decrypt the received 

OTP. Fields in the decrypted OTP is then used to determine of the OTP is valid. 

With the introduction of Yubikey 2.2, features for two-way communication, i.e. “challenge-

response” have been introduced. This requires support by a client application. Yubico provides 

a COM component for such interaction in the Yubico Client API. 

 

 

 

 

 

 

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 8 of 20 
 

yubico

cococo 
3.1 Configuration 

Before a YubiKey device can be used, it needs to be configured. When manufactured, the 

device is in an un-configured state and it can therefore not generate any OTPs. 

 

The configuration is performed by a keyboard back-channel, where configuration data is sent 

to the device via HID reports. The complexity of implementing this scheme is fully taken care 

of by YubiKcom component, where the required functionality is exposed as an Application 

Programming Interface (API). 

3.2 Device password 

In order to allow a configured device to be re-configured, a security mechanism is provided. 

Access to configuration properties of the device can be restricted by the means of a 48-bit 

password. If set, any operation involving update of the configuration image requires the 

correct 48-bit password to be supplied. 

From a security standpoint, this approach is targeting destructive attacks as the interface 

does not provide any means of retrieving secret information. The configuration interface is 

write-only, and the term destructive attack refers to an opponent that wants to erase or modify 

the settings of a device. 

By design, there is a “throttle” on update operations, which effectively limits the update 

throughput to around ten operations per second. Therefore, an exhaustive search for a static 

configuration password with 248 bits would require an effort in the region of 1013 seconds, 

which means some 890,000 years. By the singularity of the device itself, an exhaustive 

search cannot be parallelized. 

These figures are however somewhat academic by nature, as even if such an exhaustive 

search would be successful, the security of the YubiKey scheme is not compromised. Again, 

a broken configuration password would only open up for a destructive operation that from a 

system’s point of view would turn the device useless. 

3.3 Device public identity  

The device could be assigned a static identity, which is a static binary string that is sent in 

clear text to uniquely identify the device. The service validating an OTP string from a device 

would typically extract this part to retrieve  the  appropriate  encryption  key  for  the  particular  

YubiKey  in question.  



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 9 of 20 
 

yubico

cococo 
The public identity has no meaning for the device itself and if used, the sequencing and exact 

meaning of the public identity is defined by the device issuer.  

3.4 Device encryption key  

All devices have a 128-bit symmetric encryption key, which is used when OTPs are 

generated. Given the nature of symmetric keys, keeping the encryption key secret is the 

absolute key to keeping the scheme secure. 

3.5 Device secret identity - UID  

The  device  public  identity  is  optional  and  as  a  static  string  can  be intercepted and/or 

modified, an additional level of identity is provided. This “secret” identity, or UID, can only be 

retrieved by a party having the encryption key for a particular device.  

The exact meaning of the secret identity is defined by the device issuer, which means that the 

secret identity does not need to be secret as such. It may be the same as the public identity. 

The UID should be unique although the scheme works even if it is not.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 10 of 20 
 

yubico

cococo 
4 Using the API 

The YubiKey configuration API is provided as a COM/ActiveX component, where methods 

and properties are exposed. Asynchronous notifications are provided by the means of events. 

The component follows the data types defined by the COM Automation model which provides 

maximum flexibility and interoperability. 

A COM component needs to be registered with the operating system in order to be used. This 

is typically done by an installation tool, where the Self registration function is used. The 

component can be explicitly registered with the regsvr32 utility: Type regsvr32 yubikcom.dll 

under the Start/Run menu. 

Integration of COM components varies between different tools and languages, but the 

following steps describe the typical workflow of using the API of the YubiKcom Component: 

1. Provide a reference to the component.  

The development tool needs access to the YubiKcom component's Type Library. It 

contains the interface description. The Type Library is embedded in the component 

itself; there is no separate .tlb file.  

2. Instantiate the component  

The instantiation phase gives a “handle” to the YubiKcom component.  

3. Set up and implement a callback/event interface (if required)  

If asynchronous notifications for when a device has been inserted or removed is 

needed, set up and implement the “sink” interface.  

4.1 Methods  

Function calls that do not return anything are implemented as methods 

ykClear 

4.2 Properties 

Configuration data and function calls that have a return value are implemented as properties 

ykIsInserted  

ykIsConfigured  

ykEnableNotifications  

ykCurPWD 

ykNewPWD  

ykStaticID  

ykUID  

ykKey 

ykFlagProperty  

ykProgram  

ykEnableDebug 

 

4.3 Callbacks 

Asynchronous events are implemented as methods. 

ykInserted 

ykRemoved 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 11 of 20 
 

yubico

cococo 
4.4 String representation 

Binary values, such as the 128-bit AES key, are expressed as hexadecimal BSTR strings. A 

hexadecimal value of 0x1234abcd is therefore be provided as a string like “1234abcd”. 

Properties with a fixed length longer than a provided string will be padded with trailing zeroes 

on a nibble-by-nibble basis. For example, the UID field is six bytes (48 bits) in length and 

providing a string of “123” would yield an UID equal to “120300” 

4.5 Yubikey 2.0 support 

With the introduction of Yubikey 2.0, two independent configurations are available. In order to 

maintain binary compatibility with existing third-party code, support for the second 

configuration is provided by the means of a flag property rather than a separate property or 

method. 

To select the second configuration, simply set the ykFLAG_SECOND_CONFIG to true. 

4.6 Debug function 

Under certain conditions, debugging of function calls can be difficult. Therefore, a debug 

function is provided which shows a message box for each function call. For example, setting 

ykKey to 12345 where the ykEnableDebug property is set yields the following message box: 

 

4.7 A quick example 

The syntax and exact methodology varies between different environments, but a sample 

snippet setting up a YubiKey could look like this 

obj = new IYubiKeyConfig 

obj.ykKey = “12345678”  

obj.ykUID = “47115812”  

obj.ykStaticID = “123abc” 

obj.ykFlagProperty(ykFLAG.ykFLAG_APPEND_CR) = True 

If obj.ykProgram Then 

Error 

Else 

Success 

  

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 12 of 20 
 

yubico

cococo 
5 API Description 

5.1 General 

The YubiKcom component exposes functions and properties through the IYubiKeyConfig 

interface and callbacks through the _IYubiKeyConfigEvents, both via the 

YubiKeyConfig class. 

The component follows the COM Automation model and therefore exposes a dual interface, 

i.e. a standard interface derived from the IDispatch interface. This typically makes 

interoperability in the Win32 environment straight-forward. Further, the .NET environment 

provides straight-forward interfacing to COM/Automation components. 

The component is provided as an In-process server, i.e. it resides in a Dynamic Link Library 

(DLL), which has an embedded type library. Depending on the “container” environment used, 

the “wiring” or “wrapping” typically varies. The type library contains enough information for this 

wiring to be done automatically. 

Consult your environment’s section of how to use external COM components. 

5.2 Synopsis  

 Methods and properties:  

 ykIsInserted  Returns TRUE if a Yubikey device is inserted 

 ykIsConfigured  Returns TRUE for a configured device is inserted 

 ykEnableNotifications Enable asynchronous notifications 

 ykCurPWD   Set current device password 

 ykNewPWD   Set new device password 

 ykStaticID   Set device static identity 

 ykUID    Set device UID 

 ykKey    Set the device AES key 

 ykFlagProperty  Set state of property flags 

 ykClear   Flush all settings 

 ykProgram   Execute programming 

 ykEnableDebug  Enable debug mode 

 Callbacks:  

 ykInserted   A YubiKey device has been inserted 

 ykRemoved   Device has been removed 

 

Each entry shows the function (method, property etc) in two languages: 

1. Visual Basic / VBA style  

2. C++ / MIDL style  

  

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 13 of 20 
 

yubico

cococo 
5.3 IYubiKeyConfig methods and properties 

5.3.1 ykIsInserted - Returns TRUE if a Yubikey device is inserted 

Property ykIsInserted As Long (Read only)  

HRESULT ykIsInserted([out, retval] long* pVal); 

Returns TRUE if one (and only one) YubiKey device is inserted in the USB port of the 

computer. 

See also: ykIsConfigured, ykEnableNotifications 

5.3.2 ykIsConfigured - Returns TRUE if a configured device is inserted 

Property ykIsConfigured As Long (Read only)  

HRESULT ykIsConfigured([out, retval] long* pVal); 

Returns TRUE if one (and only one) YubiKey device is inserted in the USB port of the 

computer and that device is configured. 

See also: ykIsInserted, ykEnableNotifications 

5.3.3 ykEnableNotifications – Enable asynchronous notifications 

Property ykEnableNotifications As Long (Write only)  

HRESULT ykEnableNotifications([in] long rhs); 

Enables or disables notifications on device insert- or removal events. The scanning is 

performed in a separate thread and the events are fired asynchronously. The application must 

implement the appropriate callback routines ykInserted and ykRemoved in order for this 

function to be meaningful. 

See also: ykIsInserted, ykInserted, ykRemoved 

5.3.4 ykCurPWD – Set current device password 

Property ykCurPWD As BSTR (Write only) 

HRESULT ykCurPWD([in] BSTR rhs); 

Set the current password for a password protected device. Failing to correctly set the current 

password for a device will cause the ykProgram operation to fail. The default setting is that 

no password is used. 

See also: ykNewPWD 

5.3.5 ykNewPWD – Set new device password 

Property ykNewPWD As BSTR (Write only) 

HRESULT ykNewPWD([in] BSTR rhs); 

Set the new password to be valid after the ykProgram operation has been completed. The 

default action is that no password is used and the device can be reprogrammed by anyone. 

See also: ykCurPWD 

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 14 of 20 
 

yubico

cococo 
5.3.6 ykStaticID – Set device static identity 

Property ykStaticID As BSTR (Write only) 

HRESULT ykStaticID([in] BSTR rhs); 

Set the static (public) identity that will be sent in clear text. Setting this device to a blank string 

(default) means that no static identity is sent at all. 

See also: ykUID 

5.3.7 ykUID – Set device UID 

Property ykUID As BSTR (Write only) 

HRESULT ykUID([in] BSTR rhs); 

Set the secret (private) identity that will be part of the encrypted OTP. Setting this device to a 

blank string (default) equals a UID of all zeroes. 

See also: ykStaticID 

5.3.8 ykKey – Set device encryption key 

Property ykKey As BSTR (Write only) 

HRESULT ykKey([in] BSTR rhs); 

Set the key for encryption of OTPs. Setting this device to a blank string (default) equals a key 

of all zeroes. 

5.3.9 ykFlagProperty – Set state of configuration property flags 

Property ykFlagProperty(index As ykFLAG) As Long  

HRESULT ykFlagProperty([in] ykFLAG index, [in] long rhs); 

Set state of property flags, which are binary flags for configuration options. Please refer to 

related documentation for an in-depth description of these flags. 

The default state of all flags is False. The flags are defined in the enumeration ykFLAG as 

follows: 

ykFLAG_TAB_FIRST Send TAB as first character 
ykFLAG_APPEND_TAB1 Send TAB after first part 
ykFLAG_APPEND_TAB2 Send TAB after second part 
ykFLAG_APPEND_DELAY1 Append a delay after first part is sent 
ykFLAG_APPEND_DELAY2 Append a delay after second part is sent 
ykFLAG_APPEND_CR Append a CR after last character 
ykFLAG_SEND_REF Send a reference string first 
ykFLAG_PACING_10MS Add 10 ms intra-character pacing 
ykFLAG_PACING_20MS Add 20 ms intra-character pacing 

 

Yubikey 1 specific flags 

ykFLAG_TICKET_FIRST Send the OTP part first and then the ID part 
ykFLAG_ALLOW_HIDTRIG Allow trigger by CAPS and NUM 
ykFLAG_STATIC_TICKET The key will generate static tickets only 

 

 

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 15 of 20 
 

yubico

cococo 
Yubikey 2 specific flags 

ykFLAG_SECOND_CONFIG Select second configuration 
ykFLAG_SHORT_TICKET Truncates the OTP output to 16 characters 
ykFLAG_STRONG_PW1 Mixes upper- and lower case in OTP output 
ykFLAG_STRONG_PW2 Replaces two characters with numerical digits 
ykFLAG_MAN_UPDATE Enables manual update of a static configuration 
ykFLAG_PROTECT_CFG2 Enables protection of first/second configurations 

 

Yubikey 2.1 specific flags 

ykFLAG_OATH_HOTP6 Select 6-digit OATH-HOTP output 
ykFLAG_OATH_HOTP8 Select 8-digit OATH-HOTP output 
ykFLAG_OATH_FIXED_MODHEX All public ID bytes Modhex 
ykFLAG_OATH_FIXED_MODHEX1 First public ID byte Modhex 
ykFLAG_OATH_FIXED_MODHEX2 First two public ID bytes Modhex 

 

Yubikey 2.2 specific flags 

ykFLAG_OATH_SEED_VAL Set the OATH-HOTP initial seed value (numeric value 
rather than binary flag) 

ykFLAG_CHAL_YUBICO Enables OTP challenge-response mode 
ykFLAG_CHAL_HMAC Enables HMAC-SHA1 challenge-response 
ykFLAG_HMAC_LT64 Sets HMAC-SHA1 data to be less than 64 bytes in 

length. If not set, the data length is fixed at 64 bytes 
ykFLAG_CHAL_KEY_TRIG Requires the Yubikey key to be pressed to complete 

the challenge-response transaction 
ykFLAG_SERIAL_BTN_VISIBLE Makes the device serial number visible by pressing 

the button at startup 
ykFLAG_SERIAL_USB_VISIBLE Makes the device serial number visible as a device 

serial number in the USB descriptor 
ykFLAG_SERIAL_API_VISIBLE Makes the device serial number visible as a device 

serial number in the USB descriptor 
 

5.3.10 ykClear – Flush all settings 

Sub ykClear 

HRESULT ykClear(); 

Restores all properties to default which is not done automatically after ykProgram has been 

executed. No programming is done, only the properties set are cleared. 

Configuration 1 is set as default. 

5.3.11 ykProgram – Execute device programming 

Property ykProgram As ykRETCODE 

HRESULT ykProgram([out, retval] ykRETCODE* pVal); 

Performs the actual program operation, where all settings are transferred and written to the 

non-volatile memory of the YubiKey device. 

For Yubikey 2, setting ykFLAG_SECOND_CONFIG the to TRUE prior to the programming 

operation writes the setting to the second configuration. 

The return codes are defined in the enumeration ykRETCODE as follows: 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 16 of 20 
 

yubico

cococo 
ykOK The operation completed successfully 
ykNO_DEVICE No device was found 
ykMORE_THAN_ONE More than one device was found 
ykREAD_ONLY The device is read-only (invalid curPWD set) 
ykREAD_ERROR An error occurred when reading the device 
ykWRITE_ERROR An error occurred when writing the device 

 

5.3.12 ykEnableDebug – Enable debug mode 

Property ykEnableDebug As Long (Write only) 

HRESULT ykEnableDebug([in] long rhs); 

Enables or disables debug mode, where each function call causes a message box to be 

displayed. This feature is used to trace problems that may occur in environments where no 

adequate debugging support is at hand. See section 4.5. 

5.4 _IYubiKeyEvents callbacks 

5.4.1 ykInserted – A device has been inserted 

Event ykInserted() 

HRESULT ykInserted(); 

Called asynchronously when a device is inserted in the USB port. In order to receive this 

notification, the ykEnableNotifications property must be set to True. 

See also: ykEnableNotifications, ykRemoved 

5.4.2 ykRemoved – device has been removed 

Event ykRemoved() 

HRESULT ykRemoved(); 

Called asynchronously when device previously detected as inserted has been removed. In 

order to receive this notification, the ykEnableNotifications property must be set to 

True. 

See also: ykEnableNotifications, ykInserted 

  

 

 

 

 

 

 

 

 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 17 of 20 
 

yubico

cococo 
6 Implementation cookbook 

The following section shows how a User Application can be built using COM/ActiveX, and 

addresses some important issues. Yubico provides a set of example programs, which can be 

used as a “boilerplate” to develop User Applications. 

Please ensure that the YubiKcom component is properly registered before proceeding. See 

section 4for details. 

6.1 Microsoft VB and VBA (Visual Basic for Applications) 

Although several differences exist between VB and VBA, the basic methodology to integrate 

the component is the same. 

The typical workflow to create a minimal implementation consists of the following steps: 

(Assuming Visual Studio .NET 2003) 

1. Create a VB project – Windows application. (In VBA applications, enter the Visual 

Basic editor)  

2. Open Project/Add references… and double-click on the YubiKcom 1.0 Type Library 

under the COM tab. The component now shows up under References section as 

YubiKcomLib and can be conveniently browsed from there.  

3. Specify the scope of the COM object variable and declare it:  

Dim WithEvents obj As 

YubiKcomLib.YubiKeyConfigClass 

4. Determine an appropriate place to instantiate the COM component, for example 

Form.Load. Instantiate the component by:  

Set obj = New YubiKcomLib.YubiKeyConfig 

5. To enable asynchronous notifications, add the following line after it: 

obj.ykEnableNotifications = True 

6. Implement the method obj.ykInserted. Just add a message box to see that we get 

there:  

Private Sub obj_ykInserted() Handles  

obj.ykInserted 

MsgBox("Inserted")  

End Sub 

7. Implement the method obj.ykRemoved. Just add a message box to see that we get 

there:  

Private Sub obj_ykRemoved() Handles obj.ykRemoved  

MsgBox("Removed") 

End Sub 

8. Run the program. When inserting a device, the “Inserted” message box should 

appear in a few seconds. When removed the “Removed” message box should appear 

almost immediately.  

Two example implementations for VB and VBA are included in the SAMPLES directory. 

Example: VB Client 

Environment: Microsoft Visual Basic .NET 2003 

Example: Excel Client 

Environment: Microsoft Excel 2003 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 18 of 20 
 

yubico

cococo 
6.2 Microsoft Visual C++ 

Integration of IPP functionality into a C++ program typically involves more work and deeper 

understanding of COM/ActiveX than a comparable implementation in VB. Further, depending 

on the supporting application development framework, the implementation complexity varies. 

As the IYubiKeyConfig interface is derived from IDispatch, a “dual interface” is 

provided, i.e. invocation can be made through direct function calls, or through dispatch 

invocation. 

A further explanation of all aspects of COM programming in VC++ is out of scope of this 

document, but the typical workflow to create a minimal implementation in an MFC application 

consists of the following steps. 

1. Select a CCmdTarget derived class to instantiate the COM component and to receive 

callbacks.  

2. Import the Type library:  

#import <yubikcom.dll> no_namespace, named_guids 

3. Declare a pointer to the object and a “cookie” (see 5. below) as a member variables 

in the class:  

IYubiKeyConfig *m_obj;  

DWORD m_cookie; 

4. At a suitable point in the class code (OnInitDialog), instantiate the component: 

HRESULT hr =  

CoCreateInstance(CLSID_YubiKeyConfig, 0, CLSCTX_ALL, 

IID_IYubiKeyConfig, reinterpret_cast<void **>(&m_obj)); 

(Ensure that COM is enabled. If not make a call to AfxOleInit or 

CoCreateInstance first). 

5. Add appropriate error handling if the instantiation fails:  

if (FAILED(hr)) { 

. . . 

} 

6. Setup the callback (Connection Point) interface: 

AfxConnectionAdvise (m_obj, DIID__IYubiKeyConfigEvents,  

GetIDispatch(FALSE), FALSE,  

&m_cookie) 

7. Enable event notifications:  

m_obj->put_ykEnableNotifications(TRUE); 

8. Make the class “COM enabled” by adding macros to the class definition:  

DECLARE_DISPATCH_MAP() 

DECLARE_INTERFACE_MAP() 

9. Setup the event sink to catch incoming events: 

BEGIN_DISPATCH_MAP(CYKClientDlg, CDialog)  

//{{ AFX_DISPATCH_MAP(CYKClientDlg)  

//}} AFX_DISPATCH_MAP  

DISP_FUNCTION_ID (CYKClientDlg, 

"ykInserted", 1,  

ykInserted, VT_EMPTY,  

VTS_NONE) 

DISP_FUNCTION_ID (CYKClientDlg,  

"ykRemoved", 2,  

ykRemoved, VT_EMPTY, 

VTS_NONE) 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 19 of 20 
 

yubico

cococo 
END_DISPATCH_MAP()  

BEGIN_INTERFACE_MAP (CYKClientDlg, CDialog) 

INTERFACE_PART (CYKClientDlg, 

DIID__IYubiKeyConfigEvents, 

Dispatch) 

END_INTERFACE_MAP() 

10. Declare and implement the member functions for the events:  

void CYKClientDlg::ykInserted(void) 

{ 

AfxMessageBox(“Inserted”); 

} 

void CYKClientDlg::ykRemoved(void) 

{ 

AfxMessageBox(“Removed”); 

} 

11. Add clean-up functions to release the component when the application closes:  

AfxConnectionUnadvise(m_obj,  

DIID__IYubiKeyConfigEvents, 

GetIDispatch(FALSE),  

FALSE, m_cookie); 

m_obj->Release(); 

12. Run the program. When inserting a device, the “Inserted” message box should 

appear in a few seconds. When removed the “Removed” message box should appear 

almost immediately.  

Before m_obj goes out of scope, remember to call AfxConnectionUnadvise. 

Example: MFC Client 

Environment: Microsoft Visual C++ .NET 2003 

6.3 Microsoft Internet Explorer / HTML scripting 

Implementing client-side code as a script in a HTML page opens up exciting new ways to 

retrieve data remotely through the Web browser. 

With a supporting server-side application, data can be captured remotely and transmitted over 

the Internet. 

With the help of Visual Studio .NET, the typical workflow to create a minimal implementation 

consists of the following steps: 

1. Create a new HTML page  

2. Instantiate the object within the <BODY> section of the HTML code:  

<object id="obj" 

 classid="CLSID: 0840D787-A0FB-4039-A05E-89B98F99674D" 

 viewastext></object> 

3. Under “Client objects & events”, add a script for window onload and enable 

notifications from there:  

obj.ykEnableNotifications = True 

4. Add script handlers for the ykInserted and ykRemoved functions: 

<SCRIPT> 

function obj_ykInserted() {  

  alert("Inserted"); 



 

 

                                                                 

 

 

 

Yubikey Configuration COM API © 2012 Yubico. All rights reserved. Page 20 of 20 
 

yubico

cococo 
} 

function obj_ykRemoved() {  

  alert("Removed"); 

} 

</SCRIPT> 

 

<SCRIPT LANGUAGE="javascript" FOR="obj"  

        EVENT="ykInserted"> 

 obj_ykInserted()  

</SCRIPT> 

 

<SCRIPT LANGUAGE="javascript" FOR="obj"  

        EVENT="ykRemoved"> obj_ykRemoved() 

</SCRIPT> 

5. Open the page in Internet Explorer. When inserting a device, the “Inserted” message 

box should appear in a few seconds. When removed the “Removed” message box 

should appear almost immediately.  

Example: HTML Client 

Environment: Internet Explorer + Visual Studio .NET 2003 

  


