

Yubikey Server COM
API

YubiKey device server-side interface
component

Version: 1.1

May 24, 2012

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 2 of 16

yubico

cococo
Introduction

Yubico is the leading provider of simple, open online identity protection. The company’s

flagship product, the YubiKey®, uniquely combines driverless USB hardware with open

source software. More than a million users in 100 countries rely on YubiKey strong two-factor

authentication for securing access to computers, mobile devices, networks and online

services. Customers range from individual Internet users to e-governments and Fortune 500

companies. Founded in 2007, Yubico is privately held with offices in California, Sweden and

UK.

Disclaimer

The contents of this document are subject to revision without notice due to continued
progress in methodology, design, and manufacturing. Yubico shall have no liability for any
error or damages of any kind resulting from the use of this document.

The Yubico Software referenced in this document is licensed to you under the terms and
conditions accompanying the software or as otherwise agreed between you or the company
that you are representing.

Trademarks

Yubico and YubiKey are trademarks of Yubico Inc.

Contact Information

Yubico Inc

228 Hamilton Avenue, 3rd Floor

Palo Alto, CA 94301

USA

info@yubico.com

mailto:info@yubico.com

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 3 of 16

yubico

cococo
Contents

Introduction.. 2

Disclaimer.. 2

Trademarks ... 2

Contact Information ... 2

1 Document Information ... 4

1.1 Purpose ... 4

1.2 Audience ... 4

1.3 Related documentation ... 4

1.4 Document History .. 4

1.5 Definitions .. 4

2 Introduction .. 5

2.1 Yubikey Server API features ... 5

2.2 Programming model .. 5

3 Using the API .. 6

3.1 Data representation and data exchange ... 7

3.2 Yubico OTP API – IYubicoOTP interface .. 8

3.3 OATH-HOTP API – IHmacSha1 interface .. 10

3.4 HMAC-SHA1 API – IHmacSha1 interface .. 11

3.5 Random number API – IRandomGen interface .. 12

4 Test container tutorial .. 13

4.1 Data buffer and encoding (IYubicoOTP) ... 14

4.2 Decoding Yubikey OTP output (IYubicoOTP) ... 14

4.3 Decoding Yubico OTP binary response (IYubicoOTP) ... 14

4.4 Creating HMAC-SHA1 (IHmacSha1) .. 15

4.5 Generating a OATH-HOTP (IHmacSha1) ... 15

4.6 Verifying a OATH-HOTP (IHmacSha1) ... 15

4.7 Decoding and verifying a HOTP with Token Identifier (IHmacSha1) 15

4.8 Creating random string (IRandomGen) ... 16

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 4 of 16

yubico

cococo
1 Document Information

1.1 Purpose

The purpose of the server interface component is to allow easy implementation of Yubikey

functionality into server-side applications. The component provides a toolbox with functions to

support Yubikey OTP, OATH-HOTP and HMAC-SHA1 implementations.

The component is not intended as a “stand-alone” utility kit and the provided sample code is

provided as boilerplate code only.

1.2 Audience

Programmers and systems integrators.

1.3 Related documentation

 The YubiKey Manual – Usage, configuration and introduction of basic concepts

 YubiKey Configuration Utility – The Configuration Tool for the YubiKey

 Yubikey Configuration API – Yubikey configuration COM API

 Yubikey Client API – Client-side support COM API

 Yubico online forum – http://forum.yubico.com

1.4 Document History

Date Version Author Activity

2007-07-10 1.0 JE First draft

2012-05-24 1.1 Z Changed document template

1.5 Definitions

Term Definition

YubiKey device Yubico’s authentication device for connection to the USB
port

USB Universal Serial Bus

API Application Programmer Interface

COM Component Object Model – a component based
programming model developed by Microsoft.

ActiveX A definition on top of COM, primarily targeted for user
interface extensions in a Web-browser.

Callback Function in the User Program called by the API

AES Advanced Encryption Standard. A NIST approved
symmetric encryption algorithm.

OATH-HOTP Initiative for Open Authentication (RFC 4226)

HMAC Hash-based Message Authentication Code

SHA-1 Secure Hash Algorithm 1

http://forum.yubico.com/

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 5 of 16

yubico

cococo
2 Introduction

In order to support integration of Yubikey functionality on the server-side in a client-server

setting, certain functions are required for validating received OTP, either when using Yubico

OTP mode or OATH-HOTP mode. With the introduction of challenge-response functionality in

Yubikey firmware 2.2, additional server-side functionality is required to issue a challenge and

decode the response.

To greatly simplify application development, Yubico provides a high-level server-side support

component based on Microsoft’s COM/ActiveX technology. With this approach, a wide range of

programming languages, scripting environments and software packages can perform

necessary server-side cryptographic validation operations using unified interfaces.

This document assumes knowledge about the YubiKey, its functions and intended usage as

well as basic challenge-response concepts.

The document further assumes working knowledge of COM, and at least one programming

language that supports COM components. Provided examples are developed with Microsoft

Visual Studio .NET 2008.

The component is designed for the Microsoft Windows Win32 environment and works with

Windows versions from Windows 2000 and onwards. Integration with Microsoft’s .NET

programming model is straightforward. Refer to appropriate .NET documentation of integration

of COM components.

2.1 Yubikey Server API features

The Yubikey Server API implements the following functional blocks:

 Yubico OTP decoding and validation

Decoding and decryption of Yubico OTPs

 OATH-HOTP generation and validation

Generation and validation of OATH-HOTPs

 HMAC-SHA1 generation

Generation of HMAC-SHA1

 Random number generation

Generation of cryptographically secure random numbers

 Data format conversion

Conversion between different data formats

2.2 Programming model

By using COM/ActiveX, most programming languages and third-party tools can interface to

the Yubikey via the YubiServerAPI Component through uniform interfaces with standard data

representation. In other words, the component can be used by any programming language

and development tool supporting COM/ActiveX. Examples include Visual C++, Visual Basic,

Delphi, Microsoft Office (VBA) and Internet Explorer VB Script.

A COM programming tutorial is beyond the scope of this document, but application samples

are provided for VB.NET and Visual C++/MFC.

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 6 of 16

yubico

cococo
3 Using the API

The YubiKey configuration API is provided as a COM/ActiveX component, where methods and

properties are exposed by three different interfaces:

 YubiServerAPI.IYubicoOTP

Provides Yubico OTP functionality

 YubiServerAPI.IHmacSha1

Provides OATH-HOTP and HMAC-SHA1 functionality

 YubiServerAPI.IRandomGen

Provides random number generation functionality

The component follows the data types defined by the COM Automation model which provides

maximum flexibility and interoperability.

A COM component needs to be registered with the operating system in order to be used. This is

typically done by an installation tool, where the Self registration function is used. The component can

be explicitly registered with the regsvr32 utility: Type regsvr32 YubiServerAPI.dll under the

Start/Run menu.

Integration of COM components varies between different tools and languages, but the following steps

describe the typical workflow of using the API of the YubiServerAPI Component:

1. Provide a reference to the component and the desired interface

The development tool needs access to the YubiServerAPI component's Type Library, which

contains the interface descriptions. The Type Library is embedded in the component itself;

there is no separate .tlb file.

2. Instantiate the component’s particular interface

The instantiation phase gives a “handle” to the selected YubiServerAPI interface in the

component.

The following examples use a “pseudo-code” notation, omitting the COM object reference and its

instantiation for the sake of clarity. Function prototypes are shown in VB notation such as

Property myFunction(myParameter As parameterType) As returnType

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 7 of 16

yubico

cococo
3.1 Data representation and data exchange

To support simple scripting languages and to allow maximum flexibility for each particular

application, input and output data is passed as COM/Automation VARIANTs. These

VARIANTs can be configured to hold strings (BSTRs), unsigned integers or byte arrays.

Property dataBuffer As VARIANT

A global property is provided to set the appropriate data encoding

Property dataEncoding As ysENCODING

The following data encoding formats are available for the VARIANTs used:

 Hexadecimal string – ysENCODING_BSTR_HEX

Lower-case hexadecimal digits without spacing, e.g. 6b6c3132

 Hexadecimal string with spaces – ysENCODING_BSTR_HEX_SPACE

Lower-case hexadecimal digits with spacing, e.g. 6b 6c 31 32

 Modhex string – ysENCODING_BSTR_MODHEX

Yubico Modhex format, e.g. hnhrebed

 Base64 string – ysENCODING_BSTR_BASE64

Base64 encoded string, e.g. a2wxMg==

 ASCII string – ysENCODING_BSTR_ASCII

ASCII (MBCS / non-Unicode) encoded string, e.g. k112

 Unsigned 16-bit integer – ysENCODING_UINT16

16-bit USHORT/UINT16 integer = 2 bytes

 Unsigned 32-bit integer – ysENCODING_UINT32

32-bit ULONG/UINT32 integer = 4 bytes

 Byte array - – ysENCODING_BYTE_ARRAY

SAFEARRAY of bytes (UINT8/UI1) with dynamic length

 NULL / Nothing

Represents an empty string holding zero bytes

Input and output data is handled by the means of a global data buffer which can be set or

read at any time. This model further allows data conversion “on the fly”, such as the following

pseudo-code

dataBuffer = 0x4711 -- Hexadecimal 4711

dataEncoding = ysENCODING_BSTR_MODHEX

print dataBuffer -- prints fibb

dataEncoding = ysENCODING_BSTR_HEX_SPACE

print dataBuffer -- prints 47 11

dataEncoding = ysENCODING_UINT32

print dataBuffer -- prints 0x00004711

Integers (16- and 32 bits) are handled as Big Endian (high byte first), just as they appear in a

byte string.

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 8 of 16

yubico

cococo
3.2 Yubico OTP API – IYubicoOTP interface

Decoding a Yubico OTP (with public ID) typically comprise the following steps:

1. Convert the Modhex string to binary bytes

2. Extract the public ID part (and customer prefix if applicable)

3. Retrieve the AES key for this public ID from a database

4. Decrypt the OTP part using this AES key

5. Verify the embedded OTP checksum

6. Verify the private ID

7. Verify the counters with the previous value stored in the database

8. Verify the timer delta (if applicable)

The IYubicoOtp interface provides two functions for (a) parsing the OTP string and (b)

decoding it using a supplied AES key:

Property otpParse(VARIANT otpString) As ysRETCODE

Property otpDecode(VARIANT aesKey) As ysRETCODE

Using the IYubicoOTP interface simplifies this overall procedure into the following pseudo-

code example:

dataEncoding = ysENCODING_BSTR_MODHEX

returnCode = otpParse(myModhexOtpString)

if returnCode = ysRETCODE_OK Then

 print publicId

 -- Get AES key for publicId -> myAesKey

 returnCode = otpDecode(myAesKey)

 if returnCode = ysRETCODE_OK Then

 if privateId(Nothing) = myPrivateId Then

 if longCounter > myLastCounter Then

 myLastCounter = longCounter

 print “OTP validated successfully”

 Else

 print “Replayed OTP”

 Endif

 Else

 print “Invalid private ID”

 Endif

 Else

 print “Could not decode OTP”

 End If

Else

 print “Could not parse OTP”

End If

In the case where a Yubico OTP has been received in challenge-response mode, the first

decoding step is not used. In this case, store the received OTP in the dataBuffer prior to

calling otpDecode

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 9 of 16

yubico

cococo
dataBuffer = myOtpResponse

returnCode = otpDecode(myAesKey)

if returnCode = ysRETCODE_OK Then

 if privateId(myStoredPrivateId) = mySentChallenge Then

print “Successfully authenticated”

 Else

print “Response does not match challenge”

 End if

Else

 print “Could not decode OTP”

End If

Once the OTP has been successfully parsed and decoded, the application-level validation

steps could be performed by using the following helper functions/properties:

Properties valid after a successful otpParse call:

Property publicId As Object

Returns the decoded public identity from a parsed OTP string

Property customerPrefix As UShort

Returns the decoded 16-bit customer prefix from a parsed OTP string

Property deviceIdentity As UInteger

Returns the decoded 20-bit device identity from a parsed OTP string

Property dataBuffer As Object

Holds the OTP part of the decoded OTP string

Properties valid after a successful otpDecode call (assuming a valid OTP being stored in

dataBuffer prior to the call):

Property privateId(Mask as Object) As Object

Returns the private identity from a decoded OTP. Optionally, an XOR mask with the pre-set

UID string can be specified when using challenge-response mode. Set the Mask parameter to

NULL/Nothing otherwise

Property useCounter As Ushort

Returns the useCounter field from a decoded OTP

Property sessionCounter As Ushort

Returns the useCounter field from a decoded OTP

Property longCounter As UInteger

Returns the useCounter and sessionCounters as a singe sequential number, ready for

compare operations and to be stored as “last counter” value.

Property timestamp As UInteger

Returns the timestamp field from a decoded OTP. This value can optionally be used to

determine the delta time between two sequentially received OTPs.

Property millisecondTimer As UInteger

Returns a free-running millisecond timer from the operating system. This value can be used to

verify the timestamp delta value between two sequentially received OTPs.

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 10 of 16

yubico

cococo
3.3 OATH-HOTP API – IHmacSha1 interface

The IHmacSha1 interface provides methods for OATH-HOTP generation and verification,

using a fixed 20 byte (160 bit) secret.

HOTPs can either be sent in plain form as 6- or 8 digits numeric values or together with a

Token Identifier according to the openauthentication.org token. The parsing routine can the

decode the full OTP string and split it into a token identifier with OMP, TT and MUI fields and

the HOTP.

The IHmacSha1 interface provides two functions for (a) parsing the HOTP string (eventually

including a token identifier) and (b) decoding it using a supplied secret:

Property hotpParse(String otpString) As ysRETCODE

The hotpParse breaks up a OTP string into a tokenIdentifier (if applicable) and a

HOTP value and its derived customerPrefix and deviceIdentity parts.

Property tokenIdentifier as String (read only)

Property customerPrefix as UShort (read only)

Property deviceIdentity as UInteger (read only)

The parsed HOTP value is stored in the dataBuffer property as Ascii string

(ysENCODING_BSTR_ASCII). The hotpDigits property is updated accordingly with 6 or 8

digits.

Prior to verifying a HOTP, the secret must be set using the hmacSecret property

Property hmacSecret As Object

Once the hmacSecret and HOTP value is set, either explicitly by assigning dataBuffer

with the HOTP value or implicitly by a prior call to the hotpParse function, the HOTP can be

verified.

A start value for the moving factor and a maximum number of values to search ahead needs

to be specified.

Property

 hotpVerify(startSearch as UInteger, maxSearch as UShort)

As Integer

The function returns -1 if the HOTP was not found within the specified search range. A value

>= 0 means that the HOTP was found.

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 11 of 16

yubico

cococo
Using the IHmacSha1 interface simplifies this overall procedure into the following pseudo-

code example:

returnCode = hotpParse(myHotpString)

if returnCode = ysRETCODE_OK Then

 print tokenId

 -- Get secret for tokenId -> mySecret

 hmacSecret = mySecret

 movingFactor = hotpVerify(0, 100) –- Window of 100 HOTPs

 if MovingFactor >= 0 Then

print MovingFactor -- Success

 Else

print “Could not decode HOTP”

 End If

Else

 print “Could not parse HOTP/token identifier”

End If

3.4 HMAC-SHA1 API – IHmacSha1 interface

The IHmacSha1 interface provides methods for HMAC-SHA1 generation using a fixed 20

byte (160 bit) secret.

Generation of a 20 byte (160 bits) HMAC-SHA1 value is straight-forward. First, set the secret

by assigning the hmacSecret property:

Property hmacSecret As Object

When set, set the HMAC input data (up to 64 bytes) via the dataBuffer property:

Property dataBuffer As Object

When the input data is set, call the hmacSha1 method

Sub hmacSha1()

This calculates the HMAC-SHA1 value and stores the result into the dataBuffer property

Using the IHmacSha1 interface to generate a HMAC-SHA1 could be done as shown by the

following pseudo-code example:

hmacSecret = myHmacSecret

dataBuffer = myDataBuffer

hmacSha1()

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 12 of 16

yubico

cococo
3.5 Random number API – IRandomGen interface

A simple method of generating cryptographically secure random numbers is provided with the

IRandomGen interface. The function relies on the Win32 CryptGenRandom function to

generate the random number.

Simply set the dataEncoding property to the desired output format and then call the

randomGen method, specifying the desired number of bytes requested.

Sub randomGen(numDigtits As UShort)

Then, read the dataBuffer property to get the generated random number.

Using the IRandomGen interface to generate a random value could be done as shown by the

following pseudo-code example:

dataEncoding = ysENCODING_HEX

randomGen(6)

print dataBuffer – The random number buffer is displayed

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 13 of 16

yubico

cococo
4 Test container tutorial

The MFC test container can be used to test the Yubikey Server API functionality and to

understand the concepts.

The MFC/VC++ source code is provided as a “boilerplate” template that can be used for test

and/or further application development. Microsoft Visual Studio 2008 or later is required to build

the test application. A reference to the YubiServerAPI.dll COM component is done at the

#import statement in the MFCTestDlg.h file. Change the project search path to the target

location if necessary.

Start the MFC test container executable

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 14 of 16

yubico

cococo
4.1 Data buffer and encoding (IYubicoOTP)

Enter a hexadecimal string in the putBuffer text field. Push getBuffer and the same string will

appear in the getBuffer read-only text field. The returned data type is appended by the

application for debug purposes.

1. Click Ascii in the Data encoding format box

2. Enter an Ascii string such as ABC123 in the PutBuffer field and push PutBuffer

3. Click Hex in the Data encoding format box

4. Click GetBuffer and the hexadecimal representation 414243313233 appears together

with the VARIANT return type VT_BSTR

This functionality is used to exchange data in the challenge-response transactions but can

also be used for simple conversion between different string formats and data types.

Set data:

1. Set dataEncoding to the appropriate ysENCODING_xxx type

2. Set dataBuffer to the desired data

Get data

1. Set dataEncoding to the appropriate ysENCODING_xxx type

2. Get the dataBuffer holding data in the selected format

The same functionality is implemented in all three interfaces

4.2 Decoding Yubikey OTP output (IYubicoOTP)

The normal setting is a Modhex encoded Yubico OTP in text format being received as output

from a Yubikey.

1. Place the cursor in the otpParse field

2. Insert a Yubikey (with known AES key) and push the Yubikey button

3. If the Yubikey sends out an ENTER keystroke, the otpParse button is automatically

pushed. Otherwise push it manually

4. The decoded public id and derived customer prefix and device identities are filled in.

The decoded OTP part has been stored in the dataBuffer

5. Now decode the string by entering the AES key in the otpDecode field and press

otpDecode

6. All decoded fields are filled in

4.3 Decoding Yubico OTP binary response (IYubicoOTP)

In challenge-response mode a raw binary buffer is used as input rather than a text OTP. The

decoding stage is therefore omitted and an additional response verification step is added

1. Enter received binary response in the putBuffer field and push putBuffer

2. Enter the known private id in the mask field

3. Enter the AES key in the otpDecode field and push otpDecode

4. The decoded fields are filled in

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 15 of 16

yubico

cococo
4.4 Creating HMAC-SHA1 (IHmacSha1)

The HMAC-SHA1 function can be used in HMAC-SHA1 challenge-response authentication.

1. Enter the HMAC-SHA1 secret (20 bytes fixed value) and push putSecret

2. Enter the input data (up to 64 bytes) in the putBuffer field and push putBuffer

3. Push hmacSha1

4. The HMAC-SHA1 is shown in the getBuffer field

Pushing NIST 198 A.2 enters a test vector from the NIST PUB 198 where the output is

0922d3405faa3d194f82a45830737d5cc6c75d24

4.5 Generating a OATH-HOTP (IHmacSha1)

As the OATH-HOTP algorithm is based on HMAC-SHA1, the OATH-HOTP functions are

present in this interface.

1. Enter the OATH-HOTP in the putSecret field and push putSecret

2. Check the desired number of output digits, 6 or 8

3. Enter the moving factor in the hotpGenerate field and push hotpGenerate

4. The HOTP is shown in the HOTP field

Checking AutoInc causes the moving factor to be automatically incremented each time

hotpGenerate is pushed

Pushing RFC4226 enters the test vector from the RFC 4226 specification

4.6 Verifying a OATH-HOTP (IHmacSha1)

The OATH-HOTP decoding/verification allows a window for moving factor search can be

specified

1. Enter the OATH-HOTP in the putSecret field and push putSecret

2. Enter the moving factor search start value

3. Enter the maximum number of iterations that shall be made in the search ahead

4. Enter the OATH-HOTP value in the HOTP field and push hotpVerify

5. The found moving factor is shown in the moving factor field

4.7 Decoding and verifying a HOTP with Token Identifier (IHmacSha1)

The hotpParse function can be used to decode a full OTP including a Token Identifier.

1. Place the cursor in the otpParse field

2. Insert a Yubikey (with known secret) and push the Yubikey button

3. If the Yubikey sends out an ENTER keystroke, the otpParse button is automatically

pushed. Otherwise push it manually

4. The decoded token identifier and derived customer prefix and device identities are

filled in. The decoded HOTP part has been stored in the dataBuffer

5. Now decode the HOTP by entering the secret in the putSecret field and press

putSecret

6. Push hotpVerify

7. The found moving factor is shown in the moving factor field

Yubikey Server COM API © 2012 Yubico. All rights reserved. Page 16 of 16

yubico

cococo
4.8 Creating random string (IRandomGen)

The random generator can be used to create challenges in a challenge-response setting.

1. Set the data encoding by checking the desired radio button

2. Enter desired number of bytes in result

3. Push GetRandom

4. The random output is shown in the GetRandom field

